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Abstract: This paper deals with stability analysis for nonlinear systems with time delay. The proposed approach is
based on the assumption that on a subset of the state space the system is represented by a continuous-time Takagi–
Sugeno system with delay and cascaded structure. The first aim is to present linear matrix inequality conditions
to assess non-local stability properties of the system. The second relevant contribution is to present linear matrix
inequalities that allow to find an inner estimate of the domain of attraction for the system subject to constraints
defining the subset under consideration. The proposed approach is based on common quadratic Lyapunov functions
and the Razumikhin technique.
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This paper aims at establishing a framework to
estimate the domain of attraction (DA) of the equilib-
rium point (the origin) for nonlinear cascaded systems
with time delay. It is assumed that there is a repre-
sentation of the system by a continuous-time Takagi–
Sugeno (TS) system with delay and cascade struc-
ture on a subset of the state space including the ori-
gin (see e.g. [1] and references therein). The method
is beneficial in that stability conditions can be deter-
mined by solving some generalized eigenvalue mini-
mization problem (GEVP) or a system of linear matrix
inequalities (LMIs) which can be efficiently handled
by means of convex optimization techniques [2]. But
another important issue in stability analysis is how to
estimate the DA. As the stability problems, such esti-
mates can be obtained based on the Lyapunov func-
tion. Specifically, for a Lyapunov function which
guarantees the local stability of the equilibrium, any
sublevel set of the Lyapunov function is an inner esti-
mate of the DA if the set belongs to the region where
the function is positive definite and its derivative with
respect to the system is negative definite. If we use
a quadratic function for TS system, the above condi-
tions are derived in terms of LMIs or GEVP. More-
over, if the LMIs are feasible, the resulted quadratic
function seems to be a global Lyapunov function for
the system. But asymptotic stability conditions in this
case are valid only within the set where the convex
sum property of TS systems holds. Therefore, when
dealing with TS systems, what makes the problem

more challenging is that additional constraints should
be considered, because the system can be usually rep-
resented (exactly or approximately) in the TS form
only on some subset of the state space including the
origin (“modeling region”). Also, the system thus
modeled may have physical constraints precisely re-
flected in the states belonging to some modeling re-
gion. So the problem arises to obtain the largest pos-
sible Lyapunov-based estimate of the DA of a nonlin-
ear system with the asymptotically stable origin and
subject to the given constraints. In other words, we
need to find invariant subsets of the DA that fit into
the modeling region.

In addition, the non-local stability of cascaded
system requires a further research. The point is lo-
cal asymptotic stability for each subsystem without
interconnections implies the same for the whole cas-
cade. But global asymptotic stability of the cascaded
system does not necessarily follow from the same
property of the subsystems. The known result is that
global asymptotic stability of the subsystems implies
the same for the whole system under the additional as-
sumption that all solutions are uniformly bounded (for
autonomous ordinary differential equations this asser-
tion can be found e.g. in [3], for a non-autonomous
nonlinear delay differential equations see e.g. [4]).
The usual approach to prove local asymptotic stabil-
ity for cascade is to find a Lyapunov function for each
subsystem. But such a method does not give a com-
mon Lyapunov function with invariant sublevel sets.
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So for the system with constraints the problem is to
find a subset of the state space which both contains all
the solutions starting in a neighborhood of the origin
and is contained in the modeling region.

First, we obtain estimates for solutions of cas-
caded TS systems with delay by extending results
from [4, 5]. Then, motivated by recent works (see,
e.g., [7, 8]), GEVP is presented to find an inner esti-
mate of the DA for some kinds of constraints which
are turned into LMIs. Notice that both GEVPs and
LMIs can be efficiently handled via available soft-
ware, e.g. MatLab.

Taking into account time delay, we use the
method of Lyapunov functions with additional restric-
tions, namely, the Razumikhin conditions [9]. We em-
ploy the sublevel set of a quadratic Lyapunov function
as an inner estimate of the so called direct DA that
does not depend on the delay [10].

Notations used throughout the paper is fairly
standard. Time delay is denoted by r (r > 0),
R+ = [0,+∞), Rn denotes the n-dimensional space
of vectors x = (x1, . . . , xn)> with the norm |x| =√∑n

i=1 x
2
i , C = C([−r, 0], Rn) is the Banach space

with the supremum-norm ‖ · ‖. For a continuous func-
tion x(t) ∈ C([α − r, α + β), Rn) (α ∈ R+, β > 0)
an element xt ∈ C is defined for any t ∈ [α, α + β)
by xt(s) = x(t+ s), −r ≤ s ≤ 0, ẋ(t) stands for the
right-hand derivative.

Then, M < 0 (M ≤ 0) means that M is a real
symmetric and negative definite (semidefinite) matrix.
The symbol ∗ within a matrix represents the symmet-
ric of the matrix.

We will study systems dynamics of which are
given by the following equation:

ẋ(t) = X(t, xt), X(t, 0) ≡ 0, (1)

where X : R+×C → Rn, n ≥ 2. The function x(t)
is said to be a solution of (1) if x(t) ∈ C([α − r, α +
β], Rn) for certain α ∈ R+, β > 0 and x(t) is an
absolutely continuous function on [α, α+β] satisfying
(1) almost everywhere on [α, α + β]. The solution of
(1) satisfying the given initial condition xα = ϕ is
denoted by x(t;α,ϕ).

In the sequel, we assume that the system is con-
sidered on a set D ⊆ Rn and the origin is an internal
point of this set (the specification of such a set can be
stipulated, e.g., by the physical meaning of state vari-
ables). Also, the right-hand side of (1) is assumed to
ensure the existence, uniqueness, and continuability
of solution for any initial function ϕ ∈ C([−r, 0], D).
In particular, if ϕ = 0 then X(t, 0) ≡ 0 implies
x(t;α, 0) ≡ 0 for any α ∈ R+.

Let ξ(t) be a piecewise continuous vector func-
tion whose values at the current time t depend on t

and on xt and belong to the set Dξ ⊂ Rs whenever
(t, xt): t ∈ R+, xt(s) ∈ D for all s ∈ [−r, 0]. For ex-
ample, ξ(t) can be a vector (x>(t), x>(t− r))>, then
Dξ = D ×D, s = 2n.

On the set Dξ we define continuous functions µk,
k = 1, . . . , p such that

µk(ξ) ∈ [0, 1],
p∑

k=1

µk(ξ) = 1 for all ξ ∈ Dξ. (2)

Suppose that on the set D equation (1) is repre-
sented in the form of cascaded TS system (see e. g.
[1] about ways of representation by TS systems):

ż(t) =
p∑

k=1

µk1(ξ(t))(Ak1z(t) +Ak1τz(t− τ1(t)) +

gk(zt, yt)), (3)

ẏ(t) =
p∑

k=1

µk2(ξ(t))(Ak2y(t)+Ak2τy(t−τ2(t))). (4)

Here x> = (z>, y>), z ∈ Rn1 , y ∈ Rn2 , n1+n2 = n,
x ∈ D ⇔ z ∈ Dz ⊂ Rn1 , y ∈ Dy ⊂ Rn2 ;
zt ∈ C(z) := C([−r, 0], Dz) and yt ∈ C(y) :=
C([−r, 0], Dy) (norms in these spaces we endow by
subscripts z and y). We also assume that gk are con-
tinuous on C(z)×C(y), gk(zt, 0) = 0, τi(t) : R+ →
[0, r] are piecewise continuous functions, µki meet (2),
Aki , Akiτ are constant matrices of proper dimension
(k = 1, . . . , p, i = 1, 2).

The following statement can be proved using
asymptotic stability theorem with Razumikhin condi-
tions [11, 9] and follows from results of [5] and [5].

Theorem 1 Assume that, for some positive numbers
a1, a2, b1, and b2, and symmetric positive definite ma-
trices Q1 ∈ Rn1×n1 , Q2 ∈ Rn2×n2 the LMIs

a)

(
−aiQi AkiQi
∗ −Qi

)
≤ 0,

(
−biQi AkiQi
∗ −Qi

)
≤

0,

b)

(
1
τΦki + (ai + bi)Qi AkiτQi

∗ −1
2Qi

)
< 0,

hold for k = 1, . . . , p, i = 1, 2 with Φki = Qi(A
k
i +

Akiτ )>+ (Aki +Akiτ )Qi. Then the zero solution of (3),
(4) is uniformly asymptotically stable.

It should be noted that under the conditions of
Theorem 1 the function V1(z) = z>P1z with P1 =
Q−11 is the Lyapunov function for (3) with y ≡ 0, and
the derivative of this function under the Razumikhin
conditions meets the inequality V ′ ≤ −c1V ; the func-
tion V2(y) = y>P2y with P2 = Q−12 is the Lyapunov
function for (4), and the solutions of the system meet

the inequality |y(t;α0, ϕ20)| ≤
√

λmax(P2)
λmin(P2)

‖ϕ20‖y.
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Since LMIs in Theorem 1 depend on the parame-
ters, using of LMI solver can be troublesome. A pos-
sible order of actions is as follows.

1. to find positive definite solutions Q1, Q2 of the
following GEVPs:

min
Qi

αi subject to

Φki < αiQi, k = 1, . . . , p (i = 1, 2);

2. to find the minimal positive ai, bi meeting ineqal-
ities a) in Theorem 1 (i = 1, 2);

3. to find the maximal r such that LMIs b) in Theo-
rem 1 are feasible.

So Theorem 1 gives the sufficient stability condi-
tions whose solutions can be efficiently obtained by
solving GEVP.

Now let us discuss the problem of constructing
the attraction domain for system (3), (4). The results
on this topic obtained through the Lyapunov direct
method and other techniques are numerous (see e.g.
[12] and references therein).

For system (3), (4) the problem has some special
feature. Namely, outside of the set D the conditions
of Theorem 1 do not ensure asymptotic stability of
the zero solution. Moreover, the set D can have the
sense of the domain of safe system operation. So, the
problem is to construct a set A ⊂ D such that the
solutions beginning in the set should not leave the set
D and must tend to equilibrium.

Within the framework of the direct Lyapunov
method, the attraction domain is estimated by the set
bounded by the level surfaces of the Lyapunov func-
tions. Here we use quadratic Lyapunov functions.
Thus, we want to find an estimateA0 ⊂ A that defined
in the form A0 = B(P, c) = {x ∈ D : x>Px ≤ c}
with some c > 0 and a positive definite matrix P .

Remember that global asymptotic stability of the
cascaded system necessarily follow from the same
property of the subsystems only under the additional
assumption that all solutions of the whole system
are uniformly bounded. Conditions guaranteeing this
property are usually given in the form of some require-
ment for the interconnection term. In our case this
term is discribed by functionals gk.

Assume that for every k = 1, . . . , p the following
estimate takes place: |gk(ϕ1, ϕ2)| ≤ Cg‖ϕ2‖y for all
t ∈ R+, ϕ1 ∈ C(z), and ϕ2 ∈ C(y). The simplest
and natural (in the context of TS systems) example is
the functionals gk(yt) = Bky(t) +Bk

τ y(t− τ3(t)).
Let V1(z) = z>P1z, where P1 = Q−11 , Q1 is

the matrix meeting conditions of Theorem 1. Then
using the estimate for the derivative of the function

with respect to (3) with y ≡ 0 and the estimate for gk,
we have that along a solution of (3), (4) we have V ′ <
0 (under the Razumikhin condition), if the initial point
satisfies ‖ϕ20‖y ≤ ∆, the solution remains in D and
V > m = M∆2 with M =

(2λmax(P1)CgK)2

λmin(P1)
, K =√

λmax(P2)
λmin(P2)

.

Thus, the solutions of (3), (4) begining in the set
A0(∆) = {(z, y) : z>P1z ≤ M∆2, |y| ≤ ∆}
do not leave the set A(∆) = {(z, y) : z>P1z ≤
M∆2, |y| ≤ K∆} whenever A(∆) ⊂ D. The lat-
ter condition can be always satisfied for a sufficiently
small ∆.

Assume now that the sets Dz and Dy are of the
form

Dz = {z ∈ Rn1 : |zi| ≤ di, i ∈ I ⊂ {1, . . . , n1}},
Dy = {y ∈ Rn2 : |yj | ≤ cj , j ∈ J ⊂ {1, . . . , n2}}. (5)

Based on the assumption and definitions and fol-
lowing the concept of [13], we can translate the con-
dition A(∆) ⊂ D into LMIs. Namely, the following
result is valid.

Theorem 2 If there exist symmetric matricesQ1 > 0,
Q2 > 0 such that the following system of LMIs has a
solution:

1. LMIs in Theorem 1;

2. (
∑
i∈I

1
d2i
Eii)Q1 < E, where E is identity ma-

trix, Eii has 1 in the (i, i) position and zeros in
all other positions,

Then the zero solution of (3), (4) is uniformly
asymptotically stable and for P1 = Q−11 we have
B(P1, 1) ⊂ Dz .

From Theorem (2) it follows that the inequality ∆ ≤
min{minj∈J cj/K, 1/

√
M} implies A(∆) ⊂ D and

therefore the set A0(∆) is an inner estimate of the DA
for system (3), (4) under constraints (5).

It is clear that the set A0(∆) can be generally en-
larged as close as possible to that of A0(∆

∗), where
∆∗ = max{∆ : A(∆) ⊂ D}. The number
∆∗ can be numerically estimated by using the fact
that the latter equality can be equivalently rewritten
as ∆∗ = min{minj∈J cj/K,

√
v1/M}, where v1 =

min{z>P1z : z ∈ ∂Dz}. Another way to find ∆∗

is to solve the following problem: for given P1 find
the minimal β ∈ (0, 1] such that

∑
i∈I

1
d2i
Eii < βP1.

Then B(P1, 1/β) = B(βP1, 1) ⊂ Dz and max{c :
B(P1, c) ⊂ Dz} = 1/β = v1. As the result, we
obtain the set A0(∆

∗) which is the maximal for the
function V1(z) = z>P1z inner estimate of the DA.
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Finally, notice that using the matrix Q2 and the
function V2(y) = y>P2y we can also construct an in-
variant inner estimate of the DA of the form A1(δ) =
{(z, y) : z>P1z ≤ Mδ2, y>P2y ≤ λmin(P2)δ

2},
where δ = min{

√
v1/M,

√
v2/λmin(P2)}, v2 =

min{y>P2y : y ∈ ∂Dy}.
In this paper the simplest case of common

quadratic Lyapunov function for TS systems is con-
sidered. Similar ideas can be used for other techniques
of stability analysis, such as fuzzy Lyapunov func-
tion or piecewise Lyapunov function approach (some
recent results for ordinary differential and difference
equations see e.g. [7, 8]). Also, the proposed ap-
proach can be naturally extended to more general con-
ditions for functionals gk.
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